MINISTÈRE DE LA SANTÉ

RÉGION LORRAINE

INSTITUT LORRAIN DE FORMATION EN MASSO-KINÉSITHÉRAPIE DE NANCY

EVALUATION DE LA SNIP EN LATEROCUBITUS

Mémoire présenté par **Anne-Sophie CARRE**Étudiante en 3^{ème} année de masso-kinésithérapie
En vue de l'obtention du Diplôme d'État
de Masseur-Kinésithérapeute
2009-2010

SOMMAIRE

Page

RESUME

1. INTRODUCTION	1.
2. ANATOMIE, PHYSIOLOGIE	2
2.1. Rappels anatomiques	2.
2.1.1. Le diaphragme	2.
2.1.2. Les cavités nasales et le nasopharynx ou cavum	5
2.2. Rappels sur la physiologie respiratoire	7.
2.2.1. Physiologie de la ventilation pulmonaire	7
2.2.2. Physiologie de la respiration nasale	8
2.2.3. Les effets du latérocubitus sur la physiologie de la ventilation	10.
3. MATÉRIEL ET MÉTHODE	10
3.1. Population	10
3.2. Matériel expérimental	10
3.3. Protocole de mesure	11
3.4. Protocole de décontamination / désinfection des embouts narinaires	14

RESULTATS	14.
4.1. Résultats généraux	14.
4.2. Résultats relatifs à l'état fumeur / non fumeur	19.
4.3. Résultats relatifs à l'état sportif / non sportif	19.
4.4 Résultats concernant 16 sujets ayant une SNIP inférieure à la norme	20.
4.5. Traitement statistique par analyse de la variance : ANOVA	21.
4.6 Traitement statistique par le test de Friedman (test des rangs de Kruskal et Wallis)	22.
DISCUSSION	23.
5.1 Analyse des résultats	23.
5.2 Discussion sur les résultats	26.
CONCLUSION	30

BIBLIOGRAPHIE

ANNEXES

RÉSUMÉ

La force des muscles inspiratoires, élément clé du bilan en kinésithérapie respiratoire, est

classiquement évaluée par la pression inspiratoire qu'ils génèrent. Il est important de pouvoir explorer

ces muscles par des techniques validées, de réalisation simple de façon la moins invasive possible et

de disposer de normes. La mesure de la SNIP, pression inspiratoire nasale maximale par un sniff, est

une de ces techniques. Elle a l'avantage d'être plus facilement réalisable et moins douloureuse que la

Pimax et de recruter plus spécifiquement le diaphragme. Cependant ces méthodes restent

complémentaires et non interchangeables. Dans la plupart des articles la SNIP est étudiée en position

assise et quelques fois en décubitus. Or dans notre pratique en kinésithérapie respiratoire nous

utilisons couramment la position latérocubitus (ELTGOL, EDIC) pour les modifications physiologiques

qu'elle apporte. Nous nous sommes intéressés à l'effet de la position sur la pression inspiratoire.

Le but de notre étude est de mesurer et de comparer les valeurs de SNIP obtenues dans trois

positions : assis, latérocubitus droit et gauche. Notre population est composée de 107 sujets sains (50

hommes et 57 femmes) âgés de 18 à 34 ans.

En position assise la SNIP est de 118±25 cmH₂O chez les hommes et 80±28 cmH₂O chez les

femmes. En latérocubitus droit elle est de 105±24 cmH₂O chez les hommes et 77±27 cmH₂O chez les

femmes. En latérocubitus gauche elle est de 106±30 cmH₂O chez les hommes et 76±28 cmH₂O en

LCG chez les femmes. Il existe une différence significative entre les sexes et entre les positions. Les

hommes ont une SNIP plus importante que les femmes. La SNIP en position assise est

significativement plus élevée qu'en latérocubitus mais la différence entre le latérocubitus droit et le

latérocubitus gauche est non significative. Nous n'avons pas mis en évidence un effet du tabac ou de

la pratique sportive sur la SNIP, cependant nous avons été gênés par les faibles effectifs respectifs.

En conclusion, la position assise semble être la plus adaptée pour évaluer la force des

muscles inspiratoires puisque c'est dans cette position que nous développons les plus grandes

pressions. Le latérocubitus pourrait être envisagé en progression dans un programme d'ESMI, ce qui

pourrait faire l'objet d'une étude ultérieure.

1. INTRODUCTION

Les muscles inspiratoires ont un rôle essentiel et leur défaillance (faiblesse ou fatigue) entraîne une dyspnée et un trouble ventilatoire restrictif (21). Il est donc important de pouvoir les explorer spécifiquement. L'évaluation de la fonction musculaire inspiratoire est un des indicateurs indispensables à l'établissement d'un bilan diagnostic kinésithérapique (BDK) afin d'établir un traitement rééducatif adapté. La force de ces muscles est classiquement évaluée par la pression qu'ils génèrent (12).

La force des muscles inspiratoires est évaluée en première intention de façon non invasive par la Pimax, pression inspiratoire maximale obtenue à la bouche lors d'un effort inspiratoire soutenu pendant au moins 1,5 seconde. Cependant, cette technique de mesure connaît d'importantes limites : les valeurs basses sont difficilement interprétables car l'effort demandé est pénible, il demande une coopération du sujet et une bonne coordination des muscles. Il en découle alors quelques fois un effort sous maximal. Ainsi les valeurs basses peuvent signer une réelle faiblesse des muscles inspiratoires comme un manque de coopération. L'hétérogénéité des valeurs normales de Pimax rend d'autant plus difficile leur interprétation (5-9). La SNIP (sniff nasal inspiratory pressure) semble susciter plus d'intérêt. C'est une méthode non invasive dynamique plus physiologique et donc plus facilement réalisable que la Pimax puisqu'il s'agit d'effectuer un reniflement qui est un geste naturel connu de tous (5-12). De plus la SNIP évalue plus spécifiquement le diaphragme que la Pimax : il y a un meilleur recrutement EMG du diaphragme lors de la SNIP pour une même activité des SCOM et des intercostaux (17). Il a été aussi démontré une asymétrie dans la mobilité des deux hémidiaphragmes dans différentes positions (4-15-28-33).

Nous proposons d'étudier la SNIP en se basant sur l'étude de C.Uldry et JW.Fitting (31). Notre étude consiste à mesurer la SNIP chez des sujets sains âgés de 18 à 35 ans en position assise et en latérocubitus droit et gauche, le latérocubitus étant couramment utilisé dans les techniques en kinésithérapie respiratoire (ELTGOL, EDIC...). L'objectif est d'analyser l'influence de la position sur la SNIP et ce que cela implique dans notre pratique en kinésithérapie respiratoire.

2. ANATOMIE, PHYSIOLOGIE

2.1. Rappels anatomiques

2.1.1. Le diaphragme (1-6-22-26)

Le diaphragme est une cloison musculo-tendineuse en forme de dôme à deux coupoles qui sépare le thorax de l'abdomen. La coupole droite se situe en regard du 4^{ème} espace intercostal et la coupole gauche en regard du 5^{ème} espace intercostal (*Figure 1*).

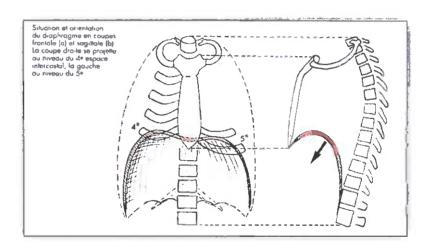


Figure 1: Projection des 2 coupoles diaphragmatiques, d'après DUFOUR (6)

Le diaphragme est constitué du centre phrénique, large nappe en forme de trèfle à trois folioles : les folioles ventrale, droite et gauche. Ces folioles sont reliées entre elles par deux bandes fibreuses semi-circulaires (*Figure 2*).

Le diaphragme ne constitue pas une cloison étanche (*Figure 2*). Il est perforé entre autre par l'aorte en regard de T12, l'œsophage accompagné par le nerf vague en regard de T10, la veine cave inférieure (VCI) accompagnée du nerf phrénique droit en regard de T9, le nerf phrénique gauche...



Figure 2 : Vue de la face inférieure du diaphragme, d'après NETTER (18)

Les fibres musculaires squelettiques rayonnent du centre phrénique vers la périphérie et sont très obliques vers le bas. Nous distinguons deux parties (*Figure 3*) :

- La portion costale s'insère sur la face interne des six dernières paires de côtes et des cartilages chondro-costaux et sur la face postérieure de l'appendice xiphoïde. Elle s'insère également sur 2 arcades fibreuses : l'arcade moyenne du carré des lombes qui relie la transverse L1 à la douzième côte et l'arcade latérale (arcade de Senac) qui relie la douzième à la onzième côte (*Figure 4*). La portion verticale au contact de la face interne du grill costal est appelée zone appositionnelle.

- La portion rachidienne s'insère sur la face antérieure des corps vertébraux des vertèbres lombaires et sur les disques intervertébraux adjacents par des piliers musculaires. Le pilier principal droit s'insère sur L1, L2, L3, L4 et le gauche sur L1, L2 (Figure 4).

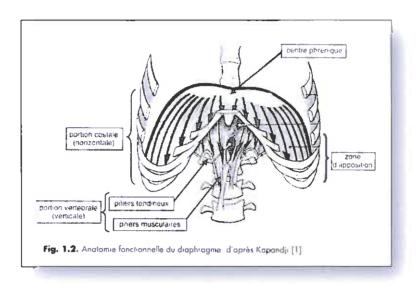


Figure 3 : Les différentes portions du diaphragme, extrait de Comprendre la Kinésithérapie

Respiratoire (1)

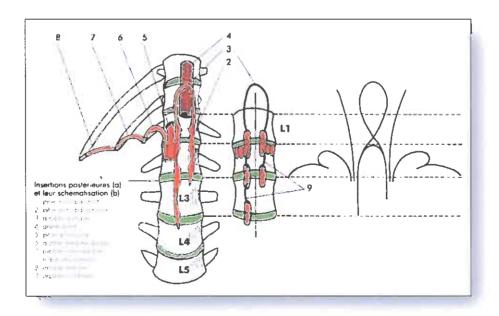


Figure 4. Schématisation des insertions postérieures du diaphragme, d'après DUFOUR (6)

Le diaphragme est innervé par les nerfs phréniques droit et gauche (issus des rameaux ventraux C4 et parfois C3, C5) et par les six derniers nerfs intercostaux. Il est très richement vascularisé par les artères phréniques droite et gauche et l'artère thoracique interne principalement. C'est le muscle inspiratoire principal : il «assure les deux tiers de la capacité inspiratoire» (25).

2.1.2. Les cavités nasales et le nasopharynx ou cavum (11-27-29)

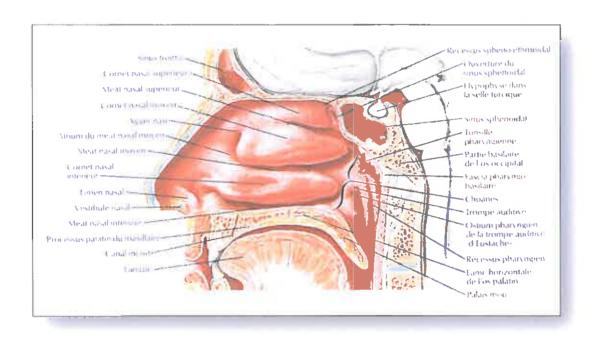


Figure 5 : Paroi latérale de la cavité nasale, d'après NETTER (18)

Le cavum est situé au dessus du voile du palais et en arrière des fosses nasales. Il débouche en arrière sur l'oropharynx par un orifice appelé choanes. Il reçoit les trompes d'Eustache : il y a donc une communication entre le cavum et l'oreille moyenne (*Figure 5*). «Le nez est composé d'une partie visible, le vestibule, et d'une partie interne, qui représente la part principale des cavités nasales» (11). La jonction entre les deux se nomme valve nasale.

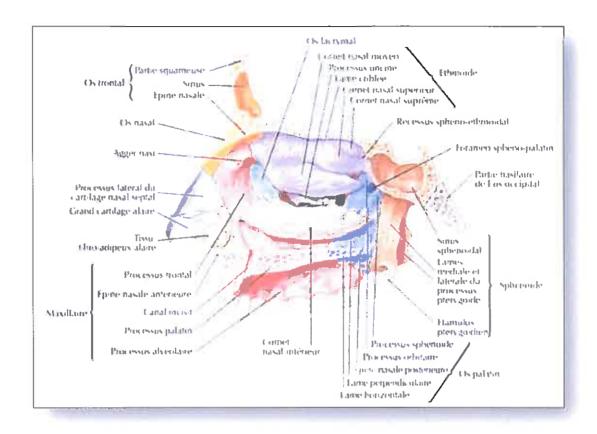


Figure 6 : Paroi osseuse et cartilagineuse latérale des cavités nasales, d'après NETTER (18)

Les fosses nasales sont séparées médianement par le cartilage septal, le vomer et l'ethmoïde. Ce sont deux couloirs horizontaux creusés dans le massif facial (*Figure 6*). Au niveau de leur paroi latérale, l'éthmoïde donne naissance aux cornets supérieur et moyen auxquels s'ajoutent le cornet inférieur qui eux même délimitent les méats supérieur, moyen et inférieur pour le passage de l'air inspiré. Dans la cavité des fosses débouchent des sinus (frontal, sphénoïdal, ethmoïdal, maxillaire) par les ostia. Différents cartilages et du tissu fibro-adipeux forment les ailes du nez pour lui donner sa morphologie propre (*Figure 6*). Les fosses nasales sont tapissées par une muqueuse richement vascularisée constituée de cellules à mucus et des cellules à cils vibratiles entre autre. Nous noterons également la présence de poils au niveau du vestibule nasal. Elles sont innervées par le nerf trijumeau (5^{ème} paire de nerfs crâniens).

2.2. Rappels sur la physiologie respiratoire (1-22-25)

La respiration met en jeu l'appareil thoraco-pulmonaire constitué des deux poumons, de la plèvre, des voies aériennes supérieures (sphère ORL) et inférieures (arbre broncho-pulmonaire), et de la cage thoracique. La cage thoracique est un ensemble mobile du fait des nombreuses articulations entre les éléments qui la composent. Cette mobilité permet des mouvements ventilatoires assimilables à un «soufflet déformable» (1) et variables en fonction de la localisation.

2.2.1. Physiologie de la ventilation pulmonaire

Lorsque le système thoraco-pulmonaire est au repos, il y a un équilibre entre la pression de rappel élastique du poumon (Pel) et la pression de distension du thorax (Pdt). La plèvre est le lien entre ces deux structures et est soumise à ces forces qui s'opposent : la pression pleurale (Ppl) est donc négative. La capacité résiduelle fonctionnelle (CRF) correspond à cette position d'équilibre.

Lors de la phase inspiratoire le diaphragme se contracte, le centre phrénique descend (Figure 7). «Ce raccourcissement est essentiellement le fait de la zone d'apposition» (22). Les viscères abdominaux sont alors refoulés en avant et le diamètre vertical du thorax augmente. Puis le diaphragme prend appui sur ces viscères maintenus par la sangle abdominale provoquant l'élévation des côtes inférieures (augmentation du diamètre transversal du thorax) et par extension une élévation du sternum et des côtes supérieures (augmentation du diamètre antéro-postérieur) : c'est la composante insertionnelle du diaphragme (Figure 7). Cette augmentation de volume thoracique engendre une dépression intrapleurale, le poumon augmente de volume et la pression intrapulmonaire devient inférieure à la pression atmosphérique : c'est l'inspiration. La fin de l'inspiration est marquée par un nouvel équilibre entre la Pel d'une part et la Pst à laquelle s'ajoute la force musculaire inspiratoire d'autre part. Les autres muscles inspiratoires dits accessoires tels que les SCOM et les scalènes interviennent pendant la respiration de repos à l'état normal et sont indispensables pendant la ventilation d'effort. La force des muscles inspiratoires, élément primordial du BDK, peut être objectivée par la SNIP : une SNIP supérieure à 70 cmH2O chez les hommes ou 60 cmH₂O chez les femmes en position assise permet d'exclure une faiblesse des muscles inspiratoires (9-12-21). L'expiration est passive et correspond au retour à la CRF.

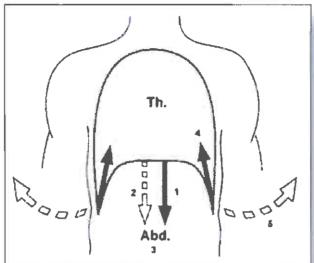
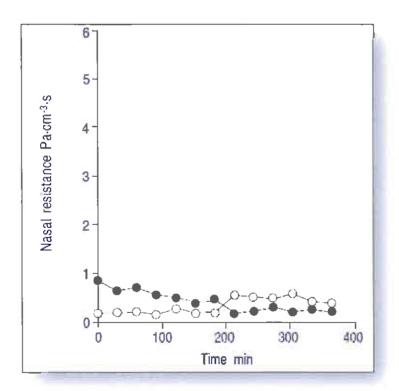


Figure 2.12. Mode d'action du diaphragme. 1. Contraction du diaphragme. 2. La coupole diaphragmatique descend. 3. Le contenu abdominal étant quasi incompressible, la course diaphragmatique est limitee vers le bas. 4. La portion du diaphragme correspondant à la zone d'apposition se contracte-5. Le grill costal inférieur effectue un mouvement en anse de seau qui augmente le diamètre transversaf du thorax.

Figure 7: Dynamique diaphragmatique lors de l'inspiration, extrait de Kinésithérapie Respiratoire (26)


2.2.2. Physiologie de la respiration nasale (11-19-27)

La respiration chez un sujet sain est normalement de type nasal. «La respiration orale n'est en fait qu'un complément antiphysiologique acquis qui n'est utilisé qu'en cas de nécessité» (20). Nous distinguons trois grandes fonctions des fosses nasales :

- Une fonction respiratoire qui permet la conduction de l'air vers l'arbre bronchique.
- Une fonction de conditionnement de l'air, c'est-à-dire le réchauffement et l'humidification de l'air inspiré, indispensable à la protection des voies aériennes inférieures.
- Une fonction de filtration de l'air grâce aux poils et aux cellules ciliées qui piègent les particules qui seront éliminées par clairance mucociliaire.

Les cornets sont des acteurs importants puisqu'en augmentant la surface de contact entre la muqueuse et l'air inspiré ils réduisent aussi la lumière des fosses favorisant l'humidification et le réchauffement. De plus leur conformation provoque un flux d'air turbulent favorisant le piégeage des particules donc la filtration de l'air.

La vasomotricité de la muqueuse fonctionne de façon cyclique (par des cycles de 3 à 7 heures) dans 80% des cas. Il y a une alternance entre vasodilatation et vasoconstriction se produisant asymétriquement entre narine droite et gauche : quand la muqueuse de la narine droite est vasodilatée (ce qui correspond à un état d' «obstruction») celle de la narine gauche est en vasoconstriction (c'est-à-dire en état de «perméabilité optimale»). Cependant la résistance totale des voies aériennes nasales reste la même (*Figure 8*). Ce cycle nasal est sous l'influence de nombreux facteurs tels que la posture : en effet, en latérocubitus la narine infralatérale a tendance à être vasodilatée et inversement.

<u>Figure 8</u>: Evolution des résistances nasales (narine gauche en blanc et narine droite en noir) au cours du temps d'après ECCLES (7)

2.2.3. Les effets du latérocubitus sur la physiologie de la ventilation (23)

Le latérocubitus modifie le gradient de pression hydrostatique entre les deux poumons. L'action verticale de la gravité fait chuter le médiastin et fait que la pression hydrostatique abdominale repousse la coupole infralatérale en direction craniale. La conséquence est que le poumon infralatéral est en déflation alors que le poumon supralatéral est en hyperinflation. De plus il a été observé une plus grande course de l'hémidiaphragme infralatéral (33).

3. MATÉRIEL ET MÉTHODE

3.1. Population

Elle se compose de 107 sujets sains, étudiants à l'IFMK de Nancy, dont 50 hommes et 57 femmes âgés de 18 à 34 ans.

Les critères d'inclusion sont des hommes et des femmes âgés de 18 à 35 ans.

Les critères d'exclusion sont : l'asthme, les rhinites, les sinusites, le rhume, la grippe, les chirurgies nasales, les maladies neuro-musculaires, les scolioses, les pathologies abdominales et autres pathologies entraînant une diminution de force des muscles respiratoires (altération de l'état général, douleurs limitant la force).

3.2. Matériel expérimental

- Instrument de mesure de la SNIP: le MicroRPM (Respiratory Pressure Meter) permet de mesurer la pression inspiratoire nasale maximale de façon non invasive. Il est constitué d'un embout narinaire de taille moyenne pour occlure une narine et d'une sonde translucide en élastomère reliant cet embout à l'appareil (*Figure 9*).

- un chronomètre
- matériel de désinfection : Surfanios des laboratoires ANIOS, seringues, air mural

Figure 9. Micro RPM

3.3. Protocole de mesure

Au préalable, chaque sujet remplit un questionnaire (Annexe I).

Nous expliquons et démontrons l'action à réaliser : il s'agit d'une phase d'éducation indispensable avant la prise des mesures. Nous demandons au sujet d'effectuer un premier sniff (qui ne sera pas comptabilisé dans l'étude) qui a pour but de vérifier la bonne compréhension de l'action.

Le sniff est défini par une inspiration nasale maximale (reniflement), vive et de très courte durée (avec un pic à moins de 500 ms). Il est initié à la CRF c'est-à-dire après une expiration calme, afin de limiter l'action de la pression de rappel élastique du poumon (Pel) (9-12-21). Ce volume est contrôlé par l'observation du sujet uniquement.

La SNIP est mesurée, selon la méthode décrite par l'équipe de Lausanne (31), au travers de l'embout occluant la narine droite pendant une inspiration maximale (sniff) effectuée par la narine gauche, la bouche devant être hermétiquement fermée.

Nous effectuons 10 mesures dans chacune des trois positions. Nous prenons les mesures d'abord en position assise sur une chaise dos droit, genoux fléchis à 90° (*Figure 10*), les pieds au sol. Ensuite nous mesurons en latérocubitus droit hanches fléchies à environ 45°, genoux fléchis à environ 90°; et enfin en latérocubitus gauche avec les mêmes modalités (*Figure 11*).

Quelle que soit la position, la main droite maintient l'embout dans la narine droite de façon à éviter les fuites d'air. L'autre bras repose sur la cuisse en position assise et le long du corps en latérocubitus. En latérocubitus un coussin est placé sous la tête.

Ordre donné au sujet : « inspirez par le nez le plus fort possible, reniflez un grand coup !»

Figure 10: Mesure en position assise.

Figure 11 Mesure en position LCG (en haut) et LCD (en bas).

Au total 30 mesures sont effectuées. La SNIP correspond à la meilleure pression parmi les 10 sniffs pour chaque position. Chaque sniff est espacé de 15 secondes de repos. Chaque changement de position est espacé de 30 secondes de repos.

3.4. Protocoles de décontamination / désinfection des embouts narinaires

Il s'agit de matériel semi-critique traité par une désinfection de niveau intermédiaire. Nous procédons d'abord par une pré-désinfection (ou décontamination) puis une désinfection. Le protocole est le suivant :

- bain de surfanios (détergent désinfectant) de concentration de 40 mL pour 8 L d'eau. Nous injectons cette solution dans chaque embout à l'aide d'une seringue puis nous laissons tremper pendant 30 minutes minimum.
 - rinçage à l'eau avec une seringue
 - 2^{ème} bain de surfanios pendant 30 minutes (même protocole que ci-dessus)
 - rinçage à l'eau
 - séchage à l'air mural

4. RESULTATS

L'intégralité des données est disponible en annexe (Annexe II). Nous présentons les résultats résumés.

4.1. Résultats généraux

Les résultats généraux se trouvent dans le tableau 1et 2, et dans les figures 12, 13, 14, 15 et 16.

Tableau I: Caractéristiques de la population : effectifs, âge moyen (mini-maxi), IMC (Kg/m²)

	Effectif	Age	IMC	Sportifs	Fumeurs
Total	107	21,6 <i>(18-34)</i>	22,57	86 (80,4%)	23 (21,5%)
Hommes	50	22,10 (18-33)	23,74	43	13
Femmes	57	21,25 (18-34)	21,55	43	10

Tableau II: Pressions inspiratoires nasales maximales par un sniff (SNIP) chez 107 sujets sains.

	SNIP Assis	SNIP en LCD	SNIP en LCG
	(cmH₂O)	(cmH₂O)	(cmH₂O)
Echantillon total N=107			
moyenne ± ET	98±33	90±29	90±33
médiane	99	89	88
valeur maximale	169	150	187
valeur minimale	14	19	18
Intervalle interquartile	50	43	46
Hommes N=50			
moyenne ± ET	118±25	105±24	106±30
médiane	119,5	103	105
valeur maximale	169	150	187
valeur minimale	64	46	39
Intervalle interquartile	41	41	47
Femmes N=57			
moyenne ± ET	80±28	77±27	76±28
médiane	83	71	73
valeur maximale	149	146	148
valeur minimale	14	19	18
Intervalle interquartile	38	35	40

ET : écart-type, N : effectif, LCD : latérocubitus droit, LCG : latérocubitus gauche

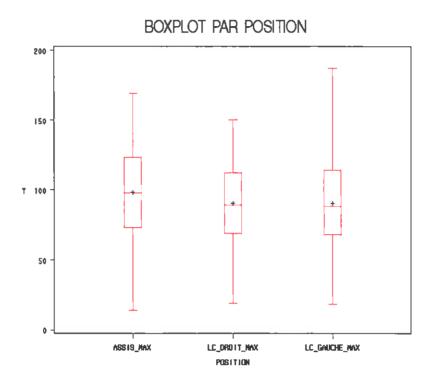


Figure 12 : Box plot représentant la dispersion de la SNIP assis, en latérocubitus droit (LC droit) et en latérocubitus gauche (LC gauche) chez 107 sujets sains.

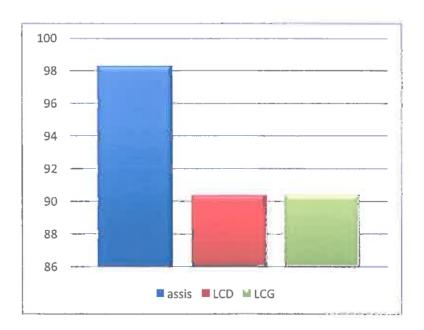
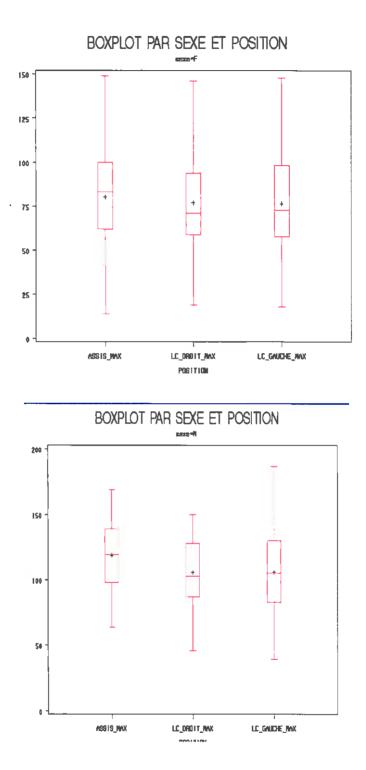



Figure 13 : Histogramme représentant la SNIP moyenne (en cmH₂O) en position assise, latérocubitus droit (LCD) et latérocubitus gauche (LCG) chez 107 sujets sains.

<u>Figure 14</u>: Box plot représentant la dispersion de la SNIP chez les femmes (en haut) et chez les hommes (en bas) en position assise, latérocubitus droit (LC droit) et latérocubitus gauche (LC gauche).

•

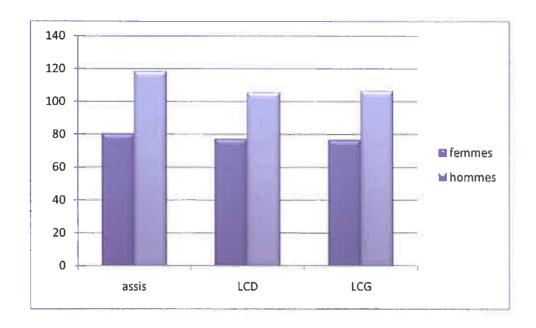


Figure 15 : Histogramme représentant les SNIP moyennes en cmH₂0 chez les hommes et les femmes en position assise, en latérocubitus droit (LCD) et en latérocubitus gauche (LCG).

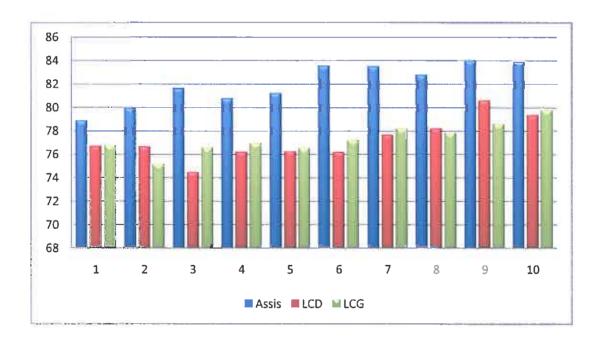


Figure 16 : Valeur moyenne de chaque essai de SNIP (de 1 à 10) en position assise, latérocubitus droit (LCD) et latérocubitus gauche (LCG) chez 107 sujets sains.

4.2. Résultats relatifs à l'état fumeur / non fumeur

Tableau III: SNIP chez 107 sujets sains en différenciant les fumeurs et non fumeurs.

			FUMEURS			NC	N FUMEU	RS
	Effectif	SNIP Assis (cmH ₂ O)	SNIP en LCD (cmH₂O)	SNIP en LCG (cmH ₂ O)	Effectif	SNIP Assis (cmH ₂ O)	SNIP en LCD (cmH ₂ O)	SNIP en LCG (cmH ₂ O)
Dans l'échantillon total Moyenne ± ET Médiane	23	111±24 113	96±22 99	101±24 104	84	95±34 91,5	89±31 86,5	88±34 82,5
Parmi les Hommes Moyenne ± ET Médiane	13	120±24 121	99±23 100	107±25 107	37	118±27 118	108±24 104	106±33 102
Parmi les Femmes Moyenne ± ET Médiane	10	99±20 100,5	92±20 93	93±23 98,5	47	76±28 76	74±27 69	73±28 70

4.3. Résultats relatifs à l'état sportif / non sportif

Tableau IV: SNIP chez 107 sujets sains en différenciant les sportifs et non sportifs.

		SPORTIFS			NC	N SPORTI	FS
Effectif	SNIP Assis (cmH ₂ O)	SNIP en LCD (cmH₂O)	SNIP en LCG (cmH ₂ O)	Effectif	SNIP Assis (cmH ₂ O)	SNIP en LCD (cmH₂O)	SNIP en LCG (cmH ₂ O)
Dans l'échantillon total				-			<u>. </u>
86				21			
moyenne±ET	101±32	93±29	92±32		86±33	81±28	85±34
médiane	101,5	91,5	90		83	83	82
Parmi les Hommes							
43				7			
moyenne±ET	120±26	107±25	106±32		109±20	98±15	110±26
médiane	123	104	102		118	100	114
Parmi les Femmes							
43				14			
moyenne±ET	82±26	79±26	78±27		74±32	72±29	72±32
médiane	84	72	75		63	63	61,5

4.4 Résultats concernant 16 sujets ayant une SNIP inférieure à la norme

Tableau V: SNIP chez 16 sujets sains ayant des valeurs inférieures à la norme.

	SNIP Assis	SNIP en LCD	SNIP en LCG
	(cm H₂O)	(cm H ₂ O)	(cm H₂O)
global N=16			
тоуеппе±écart-type	48±16	52±18	50±21
médiane	48,5	54	52
Intervalle interquartile	17,5	17,5	29
Hommes N=3			
moyenne±écart-type	59±11	63±17	57±23
Femmes N=13 moyenne±écart-type	48±17	52±19	50±22

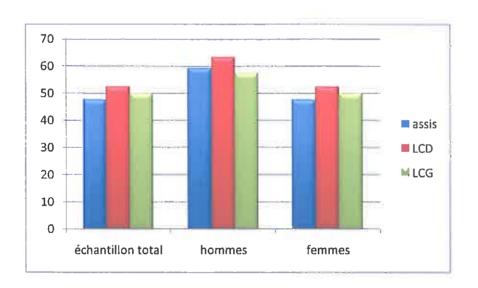


Figure 17: Histogramme représentant la SNIP moyenne (en cmH₂O) en position assise, latérocubitus droit (LCD) et latérocubitus gauche (LCG) chez 16 sujets sains ayant une SNIP inférieure à la norme.

4.5. Traitement statistique par analyse de la variance : ANOVA

L'ANOVA (analysis of variance) permet de déterminer s'il existe une différence de moyenne entre trois groupes ou plus.

Les tests préalables à l'étude concluent à une distribution Normale de la variable (Pimax) et à une homoscédasticité pour cette variable dans les populations dont les groupes sont issus : nous pouvons donc utiliser une ANOVA. (32)

Nous définissons deux hypothèses avec un risque α de 5% :

- Ho : hypothèse nulle, il n'y a pas de différence entre les moyennes
- H1 : hypothèse alternative, au moins une moyenne est différente des autres

Pour simplifier:

- Si p > 0,05 : la différence entre les moyennes est non significative, on rejette
 l'hypothèse H1
- Si p < 0,05 : il existe une différence significative entre les moyennes, on rejette
 l'hypothèse H0 avec un risque α de 5%

Tableau VI: Résultats de l'ANOVA bivariée

Variable	Position en m en cmH₂O	oyenne de SN				
	Assis	LCD	LCG	p*	p**	p***
Sexe				<0,001	<0,001	0,02
M (n = 50)	118.1 (25.5)	105.5 (24.2)	106.2 (30.4)		•	·
F (n = 57)	80.3 (27.8)	77.1 (26.6)	76.6 (28.1)			
Fumeur				<0,001	0,07	0,09
Oui (n = 23)	111,1 (24,5)	95,8 (21.7)	100.7 (24.4)			
Non $(n = 84)$	94,4 (33.8)	88,6 (30.9)	87.6 (34.4)			
Sportif				0,008	0,1	0,1
Oui (n = 86)	100,9 (32.1)	92.5 (29.3)	91,2 (32.2)			
Non $(n = 21)$	85,6 (32,9)	80,6 (27.7)	84.6 (34,7)			

p* = effet position

p** = entre modalité de chaque variable (homme vs femme)...

p*** = interaction position*variable

<u>Tableau VII:</u> Résultats de l'ANOVA mesures répétées (Comparaison des sniffs selon les mesures (1, 2, 3, etc.)

Variable	moyenne (écart type)	p*	p**	p***
Sexe		0.009	<0.001	0,02
Homme $(n = 50)$	118.1 (25.5)	3,333		5,02
Femme (n = 57)	80.3 (27.8)			
Sexe		<0.001	<0.001	0,02
Homme $(n = 50)$	105.5 (24.2)			•
Femme (n = 57)	77.1 (26.6)			
Sexe		0,05	<0.001	0.01
Homme $(n = 50)$	106.2 (30.4)	•	•	•
Femme $(n = 57)$	76.6 (28.1)			
	Sexe Homme (n = 50) Femme (n = 57) Sexe Homme (n = 50) Femme (n = 57) Sexe Homme (n = 50)	Sexe Homme (n = 50) 118.1 (25.5) Femme (n = 57) 80.3 (27.8) Sexe Homme (n = 50) 105.5 (24.2) Femme (n = 57) 77.1 (26.6) Sexe Homme (n = 50) 106.2 (30.4)	Sexe 0.009 Homme (n = 50) 118.1 (25.5) Femme (n = 57) 80.3 (27.8) Sexe <0.001	Sexe 0.009 <0.001 Homme (n = 50) 118.1 (25.5) 80.3 (27.8) Sexe <0.001

p* = effet temps

LCD: latérocubitus droit LCG: latérocubitus gauche

4.6 Traitement statistique par le test de Friedman (test des rangs de Kruskal et Wallis)

Nous avons utilisé le test de Friedman pour l'analyse des résultats des 16 sujets présentant une SNIP inférieure à la norme. L'effectif étant faible nous devons utiliser ce test non paramétrique pour l'analyse de la variance qui ne nécessite pas une normalité de la distribution de la variable. Il est basé sur le test des rangs et permet de comparer les 3 positions sur la totalité de l'échantillon (car nous ne pouvons analyser les résultats par sexe du fait de la petitesse de l'échantillon) (32).

Nous posons les mêmes hypothèses H1 et H0 avec un risque α de 5%. Nous prenons les mêmes critères de conclusion que pour l'ANOVA.

p** = entre modalité de chaque variable (homme vs femme) etc.

p*** = interaction temps*variable

<u>Tableau VIII :</u> Résultats du test de Friedman sur l'échantillon des 16 sujets ayant une SNIP inférieure la norme.

valeur calculée	4,2903
<u>Probabilité p</u>	0,117

5. DISCUSSION

5.1 Analyse des résultats

ANALYSE DES RESULTATS GENERAUX

La SNIP a été mesurée chez 107 sujets sains (50 hommes et 57 femmes) dont l'âge varie de 18 à 34 ans. L'IMC moyen de l'échantillon est de 22,57 Kg/m². Nous comptons 80,4% de sportifs également répartis entre les sexes et 21,5% de fumeurs (**Tableau I**).

Nous avons mesurė la SNIP dans trois positions selon l'ordre suivant : assis, latérocubitus droit, latérocubitus gauche. Dans l'échantillon global et en position assise, la SNIP est de 98±33 cmH₂O (**Tableau II**). Chez les hommes elle est de 118±25 cmH₂O et chez les femmes 80±28 cmH₂O. Ces valeurs correspondent aux normes précédemment établies pour la même tranche d'âge environ (20-35 ans) : 117±29 cmH₂O pour les hommes et 84±14 cmH₂O pour les femmes (10-31).

EVOLUTION DES 10 SNIFFS

L'évolution de la SNIP moyenne au cours des 10 sniffs en position assise, LCD et LCG est représentée par la *figure 16*. L'ANOVA (**Tableau VII**) indique que quelle que soit la position il y a une différence significative de la SNIP au cours des 10 sniffs et entre hommes et femmes (p*, p**, p***<5%). Nous observons une évolution globalement croissante du 1^{er} au 10^{ème} sniff (*figure 16*). Dans notre étude la meilleure valeur se situe en moyenne en 9^{ème} position en position assise et en LCD, et en 10^{ème} position en LCG. Dans l'étude de C. Uldry et JW. Fitting (31) l'évolution de la SNIP est

strictement croissante et donc la meilleure valeur se trouve en 10^{ème} position mais la différence entre le 8^{ème} 9^{ème} et 10^{ème} sniff est non significative. En règle générale, chez la plupart des sujets nous retrouvons un plateau des pressions entre le 5^{ème} et le 10^{ème} sniff justifiant le nombre d'essais à effectuer (12). Fitting suggère de continuer les essais jusqu'à ce que la pression baisse si la meilleure valeur est atteinte lors du 10^{ème} sniff (31) ou quand elle est légèrement inférieure à la normale ou qu'elle est utilisée pour évaluer un déclin fonctionnel (8-16). Ainsi on diminue le risque de mauvais diagnostic. Dans notre étude tous les sujets n'ont bénéficié que de 10 sniffs par position dans un souci d'égalité.

COMPARAISON DES 3 POSITIONS

Sur l'échantillon global, la SNIP en LCG est plus dispersée que dans les deux autres positions (figure 12). Cela relativise les conclusions la concernant. Ce résultat reste vrai sur les sous-échantillons par sexe (figure 14). La dispersion prédomine chez les hommes. En effet c'est en LCG que nous retrouvons le plus grand intervalle interquartile dans les deux sexes et le plus grand écart-type chez les hommes (Tableau II, figure 14). En outre, chez les hommes et les femmes, les SNIP en position assise et en LCD ont des répartitions très proches.

Le test statistique par l'ANOVA bivariée (**Tableau VI**) montre qu'il existe une différence significative entre la SNIP des hommes et celle des femmes (p**<5%). La SNIP des hommes est plus élevée que celle des femmes. Il montre qu'il existe aussi une différence significative de la SNIP en fonction de la position (p*<5%). La SNIP est influencée à la fois par le sexe et la position dans laquelle elle est mesurée (p***<5%). Sur l'échantillon global (*figure 13*) nous voyons clairement que les SNIP obtenues en LCD et LCG sont très proches et plus basses que la SNIP en position assise. Nous retrouvons cette même observation dans les sous-échantillons par sexe (*figure 15*) la différence étant plus marquée chez les hommes que chez les femmes : chez les hommes la SNIP est de 105±24 cmH₂O en LCD et de 106±30 cmH₂O en LCG ; chez les femmes elle est de 77±27 cmH₂O en LCD et de 76±28 cmH₂O en LCG (**Tableau II**).

Il existe donc une différence significative entre la position assise et le latérocubitus en faveur de la position assise mais il n'y a pas de différence entre le LCD et le LCG. Nous remarquerons que

JW. Fitting et C. Uldry n'avaient pas trouvé de différence significative entre la position assise et le décubitus (31).

ANALYSE DES RESULTATS CONCERNANT LES FUMEURS / NON FUMEURS

Nous nous sommes intéressés ensuite à l'effet du tabac sur la SNIP dans ces trois positions (Tableau III). Cependant l'effectif de fumeurs est restreint par rapport à l'effectif total (21,5%), les résultats statistiques sont donc fragiles et ils ne pourront mener à des conclusions fiables extrapolables à la population générale. Dans notre étude, l'ANOVA (Tableau VI) montre une différence significative de la SNIP en fonction des positions (p*<5%) mais il n'y en a pas entre fumeurs et non fumeurs. Là encore, en observant les moyennes des fumeurs (Tableau III), nous constatons que la SNIP en position assise est plus élevée qu'en LCD ou LCG et que les valeurs de SNIP sont plus élevées chez les hommes que chez les femmes. Nous notons qu'il n'avait pas été mis en évidence de corrélation significative entre la Pimax et l'état fumeur chez le sujet sain (13).

ANALYSE DES RESULTATS CONCERNANT LES SPORTIFS / NON SPORTIFS

Enfin, nous nous sommes intéressés à l'effet du sport sur la SNIP dans les trois positions (Tableau IV). Comme pour l'étude sur l'échantillon « fumeur », nous sommes limités par un faible effectif de non sportifs (19,6%). Nous ne pourrons donc tirer de conclusions fiables pour cette catégorie. De nouveau, l'ANOVA (Tableau VI) montre une différence significative de la SNIP entre les positions (selon le même schéma) mais pas entre sportif et non sportif.

ANALYSE DES RESULTATS DES 16 SUJETS AYANT UNE SNIP INFERIEURE A LA NORME

Dans l'échantillon total nous avons relevé 16 sujets ayant une SNIP inférieure à la norme (Tableau V). Les hommes gardent une SNIP légèrement plus haute que les femmes et globalement la SNIP est plus élevée en LCD (figure 17). Mais sur l'échantillon global les médianes sont relativement proches, l'intervalle interquartile est identique en position assise et en LCD et nous retrouvons un intervalle interquartile en LCG plus important (Tableau V). Le résultat statistique (Tableau VIII) montre que nous ne pouvons pas mettre en évidence une différence de distribution entre les 3 positions de mesure (p > 0,05) : il n'y a pas de différence significative de la SNIP entre les 3 positions.

5.2 Discussion sur les résultats

FATIGUE, EFFET D'APPRENTISSAGE?

La SNIP demande d'effectuer un effort maximal mais qui est très court (<500 ms) et simple à réaliser. De plus chaque sniff est entre coupé de 15 secondes de repos. L'enchaînement des sniffs n'entraîne donc pas de fatigue (24-31) pouvant expliquer une pression plus faible en latérocubitus, sachant que les mesures ont toujours été faites d'abord assis puis en LCD et enfin en LCG.

Il a été observé un effet d'apprentissage jusqu'au 7^{ème}-8^{ème} sniff puis la SNIP se stabilise (24-31). Si nous enchaînons une 2^{ème} série de 10 sniffs le gain observé est faible (24). L'effet d'apprentissage persiste donc après le 10^{ème} sniff (16) sans augmenter significativement la SNIP.

INFLUENCE DE LA POSITION SUR LA BIOMECANIQUE VENTILATOIRE

Le diaphragme est le muscle principal de l'inspiration. De par ses insertions il génère une augmentation du diamètre du thorax selon les 3 axes. Cette augmentation associée à la descente du diaphragme augmente le volume du thorax diminuant la pression pleurale et provoquant l'inspiration (26). Le latérocubitus impose un point fixe au niveau de l'hémithorax infralatéral pouvant modifier la mécanique ventilatoire (limitation de la mobilité de cet hémithorax) (33). La mobilité du thorax est classiquement objectivée par la mesure des périmètres axillaire et xiphoïdien. Or dans l'étude de Reggiori (25) il n'a pas été démontré de corrélation entre la Pimax et l'ampliation thoracique en position assise. Nous supposons qu'une éventuelle modification de l'ampliation thoracique en latérocubitus ne peut pas expliquer la différence de pression obtenue par rapport à la position assise. Il serait néanmoins intéressant de faire une étude pour le vérifier.

INFLUENCE DE LA POSITION SUR LE CYCLE NASAL

Nous savons que la vasomotricité du nez est régie par le cycle nasal et que ce cycle est sensible aux variations de position. En effet en LCD la narine droite a tendance à être vasodilatée (20). Il y a donc une augmentation relative des résistances dans la narine droite, ce qui pourrait expliquer une SNIP un peu plus basse en LCD par rapport à la position assise. Mais cela n'explique pas l'absence de différence de pression entre le LCD et LCG. De plus il a été étudié les limites de

fiabilité de la SNIP lors d'une congestion nasale simulée pas nébulisation d'histamine (10-14). La conclusion est que «la SNIP demeure fiable lorsque la congestion nasale n'entraîne qu'une chute modérée du débit nasal de pointe» (14). Autrement dit, le cycle nasal ne peut pas être responsable d'une différence si importante de pression entre la position assise et le latérocubitus comme nous avons pu l'observer.

INFLUENCE DE LA POSITION SUR LA MOBILITE DU DIAPHRAGME ET SUR LES SNIP

Il a été démontré par ultrasons, fluoroscopie et IRM entre autres que la mobilité diaphragmatique varie en fonction de la position. D'une manière générale l'hémidiaphragme droit a une plus grande mobilité que l'hémidiaphragme gauche dans toutes les positions sauf en LCG (15). L'amplitude diaphragmatique est plus grande chez l'homme que chez la femme (4). Or nous savons qu'il y a une corrélation entre l'amplitude des mouvements diaphragmatiques et les volumes inspiratoires (2-4-22) qui eux même dépendent de la force des muscles inspiratoires.

Une étude sur la mobilité de l'hémidiaphragme droit spécifiquement en ventilation spontanée chez des sujets sains a montré qu'il a une plus grande course en LCD qu'en LCG (33). Cette différence peut s'expliquer par le poids des viscères et une plus grande pression hydrostatique abdominale s'appliquant à la face inférieure du diaphragme qui repousse la coupole infralatérale en direction céphalique la plaçant en position expiratoire donc avec une mise en tension relative des fibres musculaires. Le rapport tension/longueur est alors favorable et il y a un plus grand déplacement. Nous pouvons supposer que le latérocubitus favorisant l'hémidiaphragme infralatéral aux dépens de l'hémidiaphragme supralatéral la SNIP obtenue en LCD explore plus spécifiquement l'hémidiaphragme droit et réciproquement la SNIP en LCG reflète plus spécifiquement la force de l'hémidiaphragme gauche avec pour conclusion une force identique des deux hémidiaphragmes puisque notre étude montre qu'il n'y a pas de différence significative de la SNIP en LCD et en LCG. Malheureusement il existe peu d'études s'intéressant au latérocubitus et nous ne disposons pas de valeurs spirométriques de base (notamment la capacité vitale) nous permettant de confronter les résultats.

Une autre étude (28) a comparé la mobilité du diaphragme en position assise et en décubitus et a montré une plus grande course du diaphragme (notamment dans sa partie postérieure) en décubitus qu'en position assise expliquée par les mêmes arguments. Pourtant l'étude de Fitting et Uldry (31) trouve une différence non significative de la SNIP entre la position assise et le décubitus. De plus notre étude montre que la SNIP en position assise est significativement plus élevée qu'en latérocubitus. Nous pensons qu'en latérocubitus (au même titre qu'en décubitus) les viscères (qui refoulent l'hémidiaphragme infralatéral en position craniale du fait de la pesanteur) génèrent une résistance à l'abaissement de la coupole diaphragmatique lors de l'inspiration par augmentation de la pression intra-abdominale (28) alors que la pesanteur en position assise va dans le sens de cet abaissement. Ceci pourrait expliquer de façon plus plausible les pressions plus basses trouvées en latérocubitus par rapport à la position assise. Il serait alors intéressant d'exploiter cette position dans un protocole de renforcement musculaire.

IMPLICATIONS DE LA DIFFERENCE DE PRESSION OBSERVEE ENTRE LES POSITIONS

Nous avons mis en évidence dans notre étude une SNIP significativement plus élevée en position assise par rapport au latérocubitus, et il n'y a pas de différence significative entre le LCD et le LCG. Nous en déduisons qu'il est plus judicieux dans le cadre du bilan de mesurer la SNIP assis. Nous ne pouvons pas tirer de notre étude des conclusions fiables quant à la possibilité (ou non) d'évaluer plus spécifiquement un hémidiaphragme via le latérocubitus.

La force développée étant plus faible en latérocubitus nous pourrions considérer cette position comme un facteur de difficulté et donc l'inclure en progression dans un programme d'entraînement spécifique des muscles inspiratoires (ESMI). De plus le latérocubitus a l'avantage d'augmenter la course de l'hémidiaphragme infralatéral. Il serait alors intéressant de faire une étude afin de vérifier les effets d'un travail sélectif des hémidiaphragmes en latérocubitus contre une charge résistive sur la force globale des muscles inspiratoires sachant que le Threshold inspiratoire est une technique validée dans le réentrainement des BPCO et qu'il existe des protocoles standardisés (3).

DISCUSSION SUR LES RESULTATS RELATIFS AUX 16 SUJETS AYANT UNE SNIP INFERIEURE A LA NORME

Nous retrouvons dans la littérature qu'une SNIP supérieure à 70 cmH₂O chez les hommes et 60 cmH₂O chez les femmes permet d'exclure une faiblesse des muscles inspiratoires mais en aucun cas qu'une SNIP inférieure à ces normes permet d'affirmer une faiblesse. Il s'avère donc nécessaire de mesurer d'autres paramètres afin d'approfondir cette évaluation des muscles inspiratoires. Il est d'usage d'utiliser en premier lieu des méthodes non invasives comme la Pimax et les EFR (Exploration Fonctionnelle Respiratoire), puis si nécessaire nous aurons recours à des techniques plus invasives.

A distance de notre étude, il a été possible de mesurer la Pimax et d'effectuer une EFR chez deux de ces sujets (Annexe 3). Nous avons trouvé une Pimax normale (>80 cmH₂O pour les hommes et >70 cmH₂O pour les femmes). Les deux EFR ne montrent pas d'anomalies notables (notamment concernant la capacité vitale) allant dans le sens d'une faiblesse des muscles inspiratoires. Il faut cependant noter que la simple spirométrie est peu sensible pour détecter une faiblesse musculaire précoce et qu' «une CV normale n'élimine en rien l'existence d'une dysfonction inspiratoire significative» (9-21).

Tout ceci illustre bien le fait «qu'un diagnostic fiable résulte de la combinaison raisonnée de plusieurs de ces mesures» (5). En effet, la SNIP et la Pimax évaluent toutes les deux la pression inspiratoire maximale mais selon deux efforts différents, ce qui reflète donc différents aspects de la fonction respiratoire (29). Et même si la SNIP est généralement plus élevée que la Pimax il existe toujours des exceptions. Ces deux techniques sont donc complémentaires et non interchangeables.

LES AVANTAGES, INCONVENIENTS ET LIMITES DE LA SNIP

La SNIP est plus simple et plus facilement réalisable que la Pimax grâce à son caractère naturel. Elle ne nécessite pas d'entraînement. Elle permet également un recrutement coordonné de tous les muscles inspiratoires et reflète bien la pression œsophagienne (12-24). C'est cette technique qui permet de recruter le plus le diaphragme (17). La SNIP est particulièrement bien adaptée au suivi

de l'évolution de maladies présentant un déclin linéaire de la force musculaire (c'est une technique validée dans le suivi des pathologies neuro-musculaires (12) et est corrélée avec des questionnaires de qualité de vie utilisés pour la SLA (8). Les principales limites sont l'obstruction nasale, un manque de coopération, de motivation. En cas de valeurs inférieures aux normes il faut compléter les résultats avec une Pimax, une EFR, des gaz du sang... afin d'objectiver une réelle faiblesse. Aussi le matériel ayant un coût, il a été proposé une variante consistant à employer l'extrémité d'une sonde à ballonnet utilisée lors du sondage urinaire comme embout narinaire, mais la fiabilité des mesures avec ce système n'a pas été prouvé (19).

6. CONCLUSION

Nous nous sommes intéressés dans cette étude à l'impact de la position sur la SNIP dans une population saine d'une tranche d'âge de 18-35 ans. Les résultats montrent une valeur de SNIP significativement plus élevée en position assise par rapport au latérocubitus, et une différence non significative entre le LCD et LCG. La position assise paraît donc plus adaptée pour l'évaluation des muscles inspiratoires. Les quelques mesures effectuées chez les sujets ayant des SNIP inférieures à la norme prouvent que la SNIP et la Pimax ne sont pas interchangeables et qu'une bonne évaluation des muscles inspiratoires résulte de l'association de différentes mesures permettant une interprétation plus fiable des résultats. La force développée en latérocubitus étant plus faible cette position pourrait être envisagée en progression lors du renforcement du diaphragme avec une spirométrie incitative (Threshold inspiratoire); ce qui pourrait faire l'objet d'une étude ultérieure. De même, il serait intéressant d'étudier la spirométrie en latérocubitus ainsi que les ampliations thoraciques afin de les confronter à nos résultats.

Bibliographie

- ANTONELLO M., DELPLANQUE D. Comprendre la kinésithérapie respiratoire : du diagnostic au projet thérapeutique. – 2^{ème} édition. – Issy-les-Moulineaux : Elsevier Masson SAS, 2007. – 315 p.
- 2. AYOUB J., METGE L., DAUZAT M., LEMERRE C., POURCELOT L., PREFAUT C., LOPEZ M.F.
- Cinétique diaphragmatique couplée à la spirométrie : étude quantitative fluoroscopique et échographique en mode M ; résultats préliminaires. – J. Radiol., 1997, 78, p. 563-568.
- 3. BARTHE J. Recommandations des journées de kinésithérapie respiratoire instrumentale (JIKRI).
 Cahiers de kinésithérapie, 2001, 209-210, 3-4, p. 11-25.
- **4. BOUSSUGES A., GOLE Y., BLANC P. –** Diaphragmatic motion studied by M-mode ultrasonography: methods, reproductibility, and normal values. Chest, 2009, 135, p. 391-400.
- 5. **DEMOULE A., SIMILOWSKI T.** Evaluation de la force des muscles respiratoires : données récentes (1998-2004). Revue des maladies respiratoires, 2004, 21, p. 1177-1182.
- 6. DUFOUR M. Anatomie de l'appareil locomoteur: Tête et tronc. 2ème édition. Issy-les-Moulineaux : Elsevier Masson SAS, 2007. 369 p.
- 7. ECCLES R. A role for the nasal cycle in respiratory defense. European Respiratory Journal, 1996, 9, p. 371-376.
- 8. FITTING J.W. Sniff nasal inspiratory pressure: simple or too simple? European Respiratory Journal, 2006, 27, p. 881-883.
- 9. FITTING J.W. Techniques d'évaluation de la force des muscles respiratoires. Kinésithérapie la revue, 2009, 94, p. 23-28.
- **10. FITTING J.W., HERITIER F., ULDRY C.** Evaluation de la force musculaire inspiratoire par la pression nasale lors du sniff. Revue de maladies respiratoires, 1996, 13, p. 479-484.

- 11. GAGA M., VIGNOLA A.M., CHANEZ P. Voies respiratoires hautes et basses : similarités et différences. WALLAERT B. Nez-Bronches : un seul organe ? Paris : Margaux Orange, 2005. p. 1-17. Groupe de travail Nez-Bronches de la SPLF.
- **12. GREEN M., ROAD J., SIECK G.C., SIMILOWSKI T.** Evaluation de la force des muscles respiratoires. Revue des Maladies Respiratoires, 2004, 21, p. 4S21-4S51.

Groupe de travail Nez-Bronches de la SPLF coordination WALLAERT B. – Nez-Bronches : un seul organe ? – Paris : Margaux Orange, 2005. – 215 p.

- 13. HAUTMANN H., HEFELE S., SCHOTTEN K., HUBER R.M. Maximal inspiratory mouth pressure (Pimax) in healthy subjects what is the lower limit of normal? Respiratory Medicine, 2000, 94, p. 689-693.
- **14. HERITIER F., RAHM F., PASCHE P., FITTING J.W.** Sniff nasal inspiratory pressure. A noninvasive assessment of inspiratory muscle strength. Am. J. Crit. Care Med., 1994, 150, p; 1678-1683.
- 15. KIRYU S., LORING S.H., MORI Y., ROFSKY N.M., HATABU H., TAKAHASHI M. Quantitative analysis of the velocity and synchronicity of diaphragmatic motion: dynamic MRI in different postures. Magnetic resonance imaging, 2006, 24, p. 1325-1332.
- 16. LOFASO F., NICOT F., LEJAILLE M., FALAIZE L., LOUIS A., CLEMENT A., RAPHAEL J.C., ORLIKOWSKI D., FAUROUX B. Sniff nasal inspiratory pressure: what is the optimal number of sniffs?— European Respiratory Journal, 2006, 27, p. 980-982.
- 17. NAVA S., AMBROSINO N., CROTTI P., FRACCHIA C., RAMPULLA C. Recruitment of some respiratory muscles during three maximal inspiratory manœuvres. Thorax, 1993, 48, p. 702-707.
- 18. NETTER F.H. Atlas d'anatomie humaine 2ème édition. Masson, 2002. 573 p.
- 19. NORMAND H., STRAUSS C., MORELOT-PANZANI C., SIMILOWSKI T., ZELTER M. Variante pratique de la mesure de la pression nasale lors du "sniff-test". Revue des maladies respiratoires, 2001, 2001, 18, p. 450-452.

- 20. PAPON J.F. Fonctions physiologiques des cavités naso-siniennes et méthodes d'explorations fonctionnelles respiratoires nasales. BRASRU D. Traité d'O.R.L. Paris : Flammarion SA, 2009. p. 202-207.
- 21. PEREZ T. Comment explorer en première intention les muscles respiratoires ? Revue des Maladies Respiratoires, 2005, 22, p. 2S37-2S46.
- **22. PINET C.** Structure, action et recrutement à l'exercice des muscles respiratoires. Revue des maladies respiratoires, 2005, 22, p. 2S9-2S18.
- 23. POSTIAUX G. Kinésithérapie respiratoire de l'enfant: techniques de soins guidées par l'auscultation pulmonaire. 3^{ème} éd. Bruxelles : De Boeck Université, 2003. 360 p.
- 24. PRIGENT H., LEJAILLE M., FALAIZE L., LOUIS A., RUQUET M., FAUROUX B., RAPHAEL J.C., LOFASO F. Assessing inspiratory muscle strength by sniff nasal inspiratory pressure. Neurocritical Care, 2004, 1, p. 475-478.
- 25. REGGIORI B. Pressions inspiratoires maximales : mesures et corrélations. Mémoire : Nancy, ILFMK : 2003-2004. 27 p.
- 26. REYCHLER G., ROESELER J., DELGUSTE P. Kinésithérapie Respiratoire. 2ème édition. Issy-les-Moulineaux : Elsevier Masson SAS, 2009. 357 p.
- 27. ROUVIERE H., DELMAS A. Anatomie humaine : descriptive, topographique et fonctionnelle : Tête et cou. 15^{ème} éd. Paris : Masson, 2002. 654 p.
- 28. TAKAZAKURA R., TAKAHASHI M., NITTA N., MURATA K. Diaphragmatic motion in the sitting and supine position: healthy subject study using a vertically open magnetic resonance system. Journal of magnetic resonance imaging, 2004, 19, p. 605-609.
- 29. TERZI N., ORLIKOWSKI D., FERMANIAN C., LEJAILE M., FALAIZE L., LOUIS A., RAPHAEL J.C., FAUROUX B., LOFASO F. Measuring inspiratory muscle strength in neuromuscular disease: one test or two? European respiratory journal, 2008, 31, p. 93-98.

- 30. TUNON-DE-LARA M., RAHERISON C., MONTAUDON M., LAURENT F., STOLL D. Imagerie nasosinusienne. WALLAERT B. Nez-Bronches : un seul organe ? Paris : Margaux Orange, 2005. p. 31-54. Groupe de travail Nez-Bronches de la SPLF.
- 31. ULDRY C., FITTING J.W. Maximal values of sniff nasal inspiratory pressure in healthy subjects.– Thorax, 1995, 50, p. 371-375.
- **32. VALLERON A.J.** Biostatistique Paris : Flammarion SA, 2007. 240 p. Collection De la biologie à la clinique.
- 33. YAMAGUTI W.P., PAULIN E., SHIBAO S., KODAIRA S., CHAMMAS M.C., CARVALHO C.R. Ultrasound evaluation of diaphragmatic mobility in different postures in healthy subjects. J. Bras. Pneumol., 2007, 33, p. 407-413.

ANNEXES

ANNEXE I

Questionnaire - Etude de la SNIP

N° d'anonymat :		Date :	
Informations concernant le su	<u></u>		
Nom :	Prénor	m :	
Date de naissance : _	.	Sexe: Fémi	nin Masculin
Age :ans			
Taille :m	Poids :	_Kg	IMC :Kg/m²
Antécédents pulmonaires :			
Oui Lesquels :		Autres:	
□ Non			
Tabagisme :			
☐ Fumeur actuel Nombre de Paque	ets-Années : []	<u></u> [
☐ Ancien Fumeur Nombre de Paqu	uets-Années : _	_ Sevré de _l	ouis :
☐ Non Fumeur			
Pratique sportive*: ☐ Oui	Non		* pratique régulière
Si oui, lesquels ?			
Activités de Loisirs :			
			P 1/2

Mesures:

	ASSIS	LATEROCUBITUS DROIT	LATEROCUBITUS GAUCHE
Sniff 1			
Sniff 2			
Sniff 3			
Sniff 4			
Sniff 5			
Sniff 6			-
Sniff 7			
Sniff 8			
Sniff 9			
Sniff 10			
SNIP (cmH ₂ O)			
REMARQUES :			
SPIROMETRIE :	Oui	(si SNIP assis < Normes)	Non

ANNEXE II

 LEGENDE:
 M =
 masculin

 F =
 féminin

 O =
 oui

 N =
 non

 SNIP homme

 SNIP femme

Caractéristiques des sujets

	sexe	fumeur	âge (ans)	taille (m)	poids (Kg)	IMC	sportif	spirométrie
1	М	N	22	1,82	88	26,57	0	N
2	М	N	25	1,78	75	23,67	0	N
3	F	N	22	1,75	65	21,22	N	0
4	М	N	20	1,85	95	27,76	Ν	N
5	F	Ν	20	1,69	59	20,66	0	N
6	F	0	21	1,68	60	21,26	0	N
7	F	Ν	20	1,61	55	21,22	N	N
8	F	N	20	1,73	68	22,72	0	0
9	F	Ν	20	1,62	64	24,39	0	N
10	F	Ν	20	1,65	66	24,24	0	N
11	F	N	21	1,67	56	20,08	0	0
12	М	Ν	22	1,67	72	25,82	N	N
13	F	Ν	21	1,7	65	22,49	0	N
14	F	N	21	1,65	60	22,04	Ν	N
15	M	Ν	20	1,81	79	24,11	0	N
16	F	0	21	1,63	57	21,45	0	0
17	F	Ν	19	1,7	70	24,22	0	N
18	F	Ν	21	1,63	61	22,96	0	N
19	F	Ν	20	1,58	57	22,83	0	0
20	F	Ν	21	1,67	69	24,74	N	N
21	F	0	27	1,65	52	19,10	0	N
22	F	N	20	1,68	63	22,32	N	N
23	F	N	34	1,65	55	20,20	0	0
24	F	Ν	19	1,66	64	23,23	0	0
25	M	N	20	1,71	61	20,86	0	N

	sexe	fumeur	âge (ans)	taille (m)	poids (Kg)	IMC	sportif	spirométrie
26	М	Ν	20	1,86	82	23,70	0	N
27	М	Ν	24	1,78	70	22,09	0	N
28	М	N	19	1,8	75	23,15	0	0
29	M	Ν	32	1,85	78	22,79	0	N
30	F	N	20	1,65	60	22,04	0	N
31	M	N	19	1,72	70	23,66	0	N
32	F	0	20	1,62	53	20,20	0	N
33	F	N	20	1,77	66	21,07	0	N
34	F	0	19	1,57	44	17,85	0	N
35	М	0	19	1,77	100	31,92	0	N
36	М	0	19	1,95	82	21,56	0	N
37	M	0	19	1,9	78	21,61	N	N
38	M	N	22	1,76	70	22,60	0	N
39	М	N	19	1,85	79	23,08	0	N
40	F	0	19	1,65	63	23,14	0	N
41	F	N	21	1,7	70	24,22	0	N
42	F	N	19	1,63	55	20,70	0	N
43	F	0	25	1,7	62	21,45	0	N
44	М	Ν	20	1,73	65	21,72	0	Ν
45	М	N	24	1,79	77	24,03	0	Ν
46	M	Ν	21	1,78	74	23,36	0	0
47	F	N	21	1,66	59	21,41	N	0
48	F	N	21	1,69	55	19,26	0	0
49	F	N	19	1,65	52	19,10	0	N
50	F	N	23	1,57	48	19,47	0	N
51	М	0	21	1,8	74	22,84	0	N
52	М	N	19	1,85	75	21,91	0	N
53	F	N	22	1,74	63	20,81	0	N
54	М	N	22	1,8	81	25,00	0	N
55	М	0	22	1,78	60	18,94	0	N
56	F	N	20	1,61	53	20,45	N	0
57	М	N	25	1,85	108	31,56	0	N
58	М	N	18	1,81	67	20,45	0	0
59	F	0	24	1,65	56	20,57	0	N
60	М	N	20	1,77	59	18,83	0	N
61	М	N	20	1,8	66	20,37	0	N
62	F	N	20	1,62	59	22,48	0	N
63	M	N	20	1,82	73	22,04	N	N
64	М	N	24	1,75	66	21,55	0	N
65	F	N	21	1,6	52	20,31	0	N
66	F	N	19	1,73	65	21,72	N	N
67	F	N	21	1,66	62	22,50	N	N

	sexe	fumeur	âge (ans)	taille (m)	poids (Kg)	IMC	sportif	spiromét rie
68	M	0	21	1,65	48	17,63	0	N
69	М	0	20	1,7	70	24,22	Ν	N
70	F	Ν	22	1,69	60	21,01	0	N
71	F	N	21	1,64	57	21,19	0	0
72	М	Ν	33	1,81	71	21,67	0	N
73	М	0	20	1,82	93	28,08	N	N
74	F	N	20	1,69	51	17,86	N	0
75	F	N	27	1,64	62	23,05	0	N
76	M	N	20	1,73	67	22,39	0	N
77	F	N	26	1,63	62	23,34	N	N
78	F	0	20	1,73	80	26,73	0	N
79	М	0	21	1,86	76	21,97	0	Ν
80	F	N	21	1,8	58	17,90	0	N
81	F	Ν	20	1,6	50	19,53	0	Ν
82	F	Ν	20	1,6	50	19,53	Ν	0
83	F	N	22	1,6	50	19,53	N	N
84	F	N	20	1,62	52	19,81	0	N
85	F	N	23	1,55	65	27,06	0	N
86	М	N	20	1,84	86	25,40	0	N
87	М	0	32	1,87	80	22,88	0	N
88	М	N	19	1,74	68	22,46	0	N
89	M	0	26	1,84	83	24,52	0	N
90	М	N	21	1,71	84	28,73	0	N
91	F	N	27	1,6	51	19,92	0	N
92	F	N	20	1,62	60	22,86	0	N
93	F	0	21	1,68	71	25,16	0	N
94	М	N	20	1,82	94	28,38	N	N
95	M	N	19	1,78	70	22,09	0	N
96	F	N	20	1,74	61	20,15	0	N
97	F	N	18	1,67	55	19,72	0	N
98	F	N	20	1,8	75	23,15	0	N
99	F	N	21	1,71	60	20,52	N	N
100	М	N	23	1,9	118	32,69	0	N
101	М	0	21	1,74	67	22,13	0	N
102	М	N	23	1,71	68	23,26	0	N
103	M	0	31	1,73	66	22,05	0	N
104	М	N	20	1,8	73	22,53	0	N
105	М	N	32	1,75	93	30,37	0	N
106	М	N	24	1,8	72	22,22	0	N
107	M	N	22	1,86	82	23,70	0	N

Valeurs des sniffs en position assise

			-							
					As	sis				
	1	2	3	4	5	6	7	8	9	10
1	145	125	141	135	143	140	158	145	137	151
2	73	118	114	88	93	89	95	90	87	105
3	18	9	15	9	15	13	14	15	_ 15	15
4	72	71	78	79	80	79	76	83	76	78
5	59	57	42	67	55	69	66	57	67	56
6	61	80	66	64	79	88	89	86	69	72
7	35	44	54	54	64	65	54	50	57	54
8	39	34	30	26	28	20	25	23	22	24
9	126	129	149	134	131	120	124	125	137	138
10	66	66	76	74	82	63	63	62	68	73
11	46	36	39	49	49	42	55	47	52	43
12	89	112	111	114	100	120	123	118	108	108
13	92	85	92	102	82	100	106	105	99	108
14	51	61	62	60	58	55	53	62	57	61
15	121	135	126	111	110	135	155	161	114	161
16	48	40	52	53	49	50	56	58	58	57
17	76	73	72	73	78	72	75	78	77	75
18	79	70	80	82	81	78	82	88	74	71
19	13	12	8	8	10	13	12	12	13	14
20	57	60	52	63	64	56	58	52	62	55
21	93	94	89	97	95	98	107	101	110	113
22	82	85	84	65	83	73	72	101	77	74
23	31	28	29	31	33	36	34	42	46	48
24	33	30	33	33	30	29	40	35	35	40
25	137	136	137	131	146	144	151	147	134	155
26	82	80	64	104	124	114	122	132	134	130
27	123	123	104	91	123	115	105	115	109	111
28	50	58	57	64	61	54	53	49	49	53
29	123	144	101	127	138	149	135	125	136	126
30	85	92	97	95	93	87	101	97	96	100
31	99	79	116	89	90	82	84	73	116	108
32	79	89	83	82	78	86	86	62	85	87
33	42	53	65	60	56	43	45	83	68	62
34	116	117	86	75	72	63	60	71	81	81
35	84	101	146	112	117	138	112	169	153	102
36	73	62	125	113	105	106	111	98	119	112

	1	2	3	4	5	6	7	8	9	10
37	88	103	85	118	113	98	109	69	81	99
38	103	109	98	83	139	96	121	117	116	97
39	90	92	88	90	67	74	106	70	91	77
40	91	98	98	104	113	92	99	107	105	109
41	53	44	31	37	33	33	72	42	49	72
42	80	73	78	72	80	78	82	79	87	69
43	47	71	60	56	76	65	53	62	81	62
44	67	75	82	74	88	75	69	91	63	71
45	99	109	114	108	132	105	106	82	69	95
46	56	50	51	50	59	70	55	50	56	45
47	49	38	36	37	37	34	51	33	40	55
48	41	39	38	36	37	35	35	34	35	37
49	80	87	79	69	71	82	92	92	66	72
50	55	55	73	61	50	58	52	45	57	53
51	74	65	62	79	78	100	101	112	101	102
52	78	98	89	82	90	82	81	71	69	75
53	73	76	64	75	65	56	66	55	54	50
54	122	133	137	106	125	123	93	102	148	152
55	68	40	48	65	77	81	67	74	84	73
56	53	51	51	58	58	52	43	54	55	46
57	94	89	98	87	97	100	88	99	109	117
58	58	61	51	67	58	51	52	61	56	63
59	97	103	104	98	103	97	90	83	92	80
60	61	62	65	68	78	97	96	97	59	59
61	61	60	98	98	87	83	93	90	88	95
62	77	87	79	80	78	71	76	80	77	70
63	82	91	88	101	101	102	107	106	109	107
64	97	115	126	109	91	93	117	93	96	94
65	87	77	85	72	80	79	64	78	88	72
66	61	57	56	51	50	49	60	60	49	60
67	86	58	82	61	52	99	80	64	60	73
68	71	76	77	70	68	70	64	56	56	60
69	85	99	115	122	99	85	111	129	125	92
70	75	67	56	66	64	76	74	71	74	84
71	40	37	37	42	33	32	35	39	43	39
72	92	104	102	96	97	99	98	92	97	90
73	113	107	121	97	99	94	107	121	98	99
74	48	49	42	49	44	40	31	37	44	41
75	78	85	80	80	72	91	90	89	81	84
76	90	96	118	123	110	128	121	110	125	101
77	81	61	99	95	92	104	100	95	98	101
78	97	67	74	94	90	82	77	76	84	78

	1	2	3	4	5	6	7	8	9	10
79	97	102	87	78	91	118	98	63	115	115
80	54	45	38	43	50	62	65	72	53	62
81	65	55	65	78	65	69	86	88	81	72
82	44	28	34	34	21	28	17	36	42	34
83	121	113	100	130	103	122	119	121	119	116
84	34	32	31	44	61	65	59	56	52	61
85	102	89	100	100	90	99	92	98	94	97
86	57	82	60	62	81	88	87	83	96	105
87	76	77	62	78	65	96	105	82	84	73
88	130	129	127	129	107	113	128	118	121	106
89	95	81	128	116	99	112	88	102	108	100
90	117	113	119	113	124	115	110	112	103	140
91	82	68	69	98	99	94	97	108	85	108
92	65	57	55	59	59	53	70	57	59	67
93	128	122	90	87	84	107	99	105	_ 110	75
94	76	81	80	72	64	78	76	81	74	73
95	101	147	121	103	117	108	90	84	103	105
96	77	75	53	68	61	84	61	66	82	67
97	50	47	55	40	47	45	51	50	39	67
98	92	86	94	107	103	111	113	96	88	85
99	123	120	85	81	112	106	94	81	93	89
100	108	124	132	129	140	134	109	141	142	146
101	108	112	129	118	125	120	127	138	124	114
102	60	72	79	105	79	104	108	86	116	90
103	142	101	104	74	98	109	98	102	80	73
104	81	97	112	114	97	112	96	101	82	114
105	93	129	140	146	87	96	125	53	118	145
106	65	59	74	45	69	87	56	63	74	48
107	99	110	122	93	64	117	71	130	140	137

Valeurs des sniffs en LCD

				ΙΔΤ	EROCUE	BITUS DE	POIT			
	11	12	13	14	15	16	17	18	19	20
1	129	106	107	105	119	107	124	128	110	126
2	84	93	91	92	86	83	88	89	93	94
3	18	17	16	19	18	18	17	16	17	16
4	65	71	65	71	67	61	65	76	76	70
5	66	65	56	62	66	63	66	60	70	69
6	65	73	68	71	69	71	64	74	68	74
7	56	54	58	54	63	57	61	61	62	62
8	27	25	20	25	20	19	20	22	22	21
9	146	121	134	136	130	142	115	128	136	134
10	56	70	64	59	68	69	61	71	59	67
11	52	60	56	60	60	55	65	64	62	61
12	77	71	82	91	73	76	86	88	89	86
13	99	103	111	98	104	102	102	93	97	95
14	56	42	36	39	43	51	42	47	50	55
15	90	104	122	119	120	105	100	125	137	117
16	60	62	55	57	50	54	54	60	62	57
17	70	48	37	37	32	36	54	42	42	44
18	58	65	67	65	63	65	62	53	72	66
19	19	19	15	17	20	23	23	21	21	21
20	53	54	56	45	61	56	63	56	50	47
21	103	95	106	108	99	103	96	102	100	108
22	81	75	85	81	72	70	87	85	93	82
23	36	44	40	38	38	42	42	40	46	40
24	52	51	54	45	47	58	57	53	59	58
25	125	115	127	111	118	116	121	128	118	130
26	92	102	115	117	131	116	122	112	116	121
27	136	142	129	139	138	140	130	135	136	122
28	46	35	39	35	40	37	39	41	39	43
29	106	103	117	117	127	125	112	127	125	124
30	110	105	98	95	98	112	112	107	103	97
31	89	72 	89	74	92	85	86	75	89	104
32	82	77	76	74	66	87	85	80	85	77
33	43	48	48	45	50	54	59	56	47	51
34	112	96	94	84	96	91	95	93	83	101
35	54	52	65	46	67	66	78	77	67	75
36	106	105	106	100	113	106	93	108	115	112
37	97	113	112	99	84	101	111	111	120	102
38	123	109	111	124	125	116	129	123	125	123
39	68	89	76	81	91	80	85	79	92	90

	11	12	13	14	15	16	17	18	19	20
40	103	107	107	105	101	99	95	112	122	123
41	54	46	49	57	48	48	41	45	44	39
42	63	60	68	55	59	52	53	58	55	59
43	61	62	53	57	68	72	67	63	60	60
44	65	61	77	60	83	61	74	62	68	64
45	58	72	90	98	82	91	97	128	127	104
46	73	87	85	74	75	70	64	75	78	74
47	45	44	46	45	35	40	50	47	55	51
48	50	46	45	44	45	46	44	48	45	43
49	59	58	57	91	128	121	91	75	74	96
50	81	82	73	67	79	81	87	78	85	94
51	78	78	74	64	71	75	89	91	75	80
52	83	79	75	67	61	62	68	82	69	69
53	53	57	51	53	54	53	56	68	53	54
54	103	109	72	72	98	103	107	105	111	122
55	77	78	76	74	59	68	72	69	82	77
56	65	53	53	47	53	48	43	44	53	50
57	92	100	100	94	83	90	102	98	102	104
58	56	49	57	61	59	65	77	72	76	74
59	96	95	80	100	93	95	101	98	103	101
60	92	65	70	74	68	65	62	61	64	64
61	86	77	56	63	56	66	60	60	61	54
62	79	78	79	83	75	75	83	77	76	74
63	93	104	101	93	97	101	100	101	96	100
64	80	79	71	80	89	76	75	102	97	81
65	108	104	100	97	96	99	105	105	106	97
66	50	50	55	57	56	56	45	44	43	51
67	81	89	88	107	88	97	103	108	100	112
68	48	42	32	41	36	44	37	37	44	35
69	89	111	95	100	109	97	104	101	109	100
70	64	62	52	62	64	67	61	56	69	56
71	28	45	41	36	33	39	46	46	38	46
72	84	83	83	88	86	89	79	84	92	95
73	76	71	70	68	72	70	76	63	77	100
74	59	45	43	49	46	46	54	48	50	51
75	74	80	75	63	85	66	67	62	63	65
76	91	88	88	92	86	83	86	80	87	80
77	79	72	72	81	74	80	75	78	81	83
78	81	70	69	69	60	66	74	63	66	66
79	85	73	71	76	74	76	76	66	68	66
80	64	64	55	50	59	63	66	66	70	64
81	66	59	54	73	69	69	80	67	77	65

	11	12	13	14	15	16	17	18	19	20
82	47	44	47	44	41	44	53	48	45	49
83	127	131	125	126	126	110	119	122	111	115
84	13	24	34	44	34	24	40	22	21	20
85	66	81	82	77	75	83	75	71	68	70
86	93	94	94	82	68	75	75	65	83	65
87	85	74	80	61	72	76	67	64	64	86
88	100	92	117	108	86	121	118	120	89	90
89	93	88	80	91	102	89	82	94	105	109
90	111	120	93	97	115	106	103	96	118	101
91	77	93	82	68	76	64	76	60	64	52
92	44	53	36	45	51	42	38	30	39	38
93	67	62	62	73	63	70	68	60	84	99
94	86	77	74	64	76	66	70	81_	83	77
95	100	129	127	123	108	132	118	138	128	128
96	52	68	62	51	63	62	61	51	46	50
97	83	59	54	59	57	52	52	62	72	57
98	72	76	66	103	78	79	70	85	82	72
99	82	97	84	91	86	92	88	98	84	80
100	120	112	112	109	109	123	112	102	117	109
101	85	113	119	125	129	117	99	98	108	103
102	88	79	45	65	78	48	94	95	134	144
103	48	70	30	86	83	91	84	129	130	114
104	64	69	77	80	71	76	84	83	89	76
105	135	95	114	135	133	98	134	144	141	139
106	39	87	51	100	43	87	82	62	73	74
107	150	129	108	123	98	76	87	91	124	92

Valeurs des sniffs en LCG

				LATE	ROCUBI	TUS GA	UCHE			
	21	22	23	24	25	26	27	28	29	30
1	123	120	116	113	129	128	121	123	124	129
2	96	93	90	88	87	93	98	83	89	71
3	19	18	15	12	10	17	14	19	23	24
4	68	63	67	67	54	68	58	65	67	64
5	76	71	73	81	72	73	75	77	79	75
6	73	72	66	66	64	62	70	70	72	70
7	61	66	63	69	55	51	51	60	59	54
8	20	20	23	19	21	21	21	19	20	21
9	140	117	117	143	124	142	119	119	115	115
10	63	58	63	55	53	57	70	65	61	63
11	60	58	52	57	55	58	65	64	59	65
12	122	97	97	112	105	114	101	103	112	115
13	68	64	77	77	87	63	58	48	53	57
14	56	50	57	43	46	44	45	58	45	52
15	52	47	43	54	64	43	60	53	51	82
16	66	61	66	68	63	63	61	60	56	57
17	62	77	69	77	60	71	74	68	79	60
18	69	58	54	54	54	68	57	59	49	52
19	12	12	15	15	18	16	15	15	14	16
20	58	50	59	57	58	62	55	55	57	55
21	99	113	111	114	121	118	109	119	114	119
22	86	85	100	92	72	97	83	74	72	76
23	40	33	37	33	39	38	39	35	41	37
24	61	62	53	56	63	56	57	69	68	68
25	133	122	108	123	123	129	123	126	115	126
26	106	104	111	95	97	95	106	103	91	117
27	83	77	75	70	68	60	76	67	78	75
28	39	33	33	31	34	31	34	35	30	33
29	131	128	102	129	108	130	112	127	114	116
30	95	89	87	94	93	86	91	91	88	86
31	99	89	75	65	70	69	73	84	67	66
32	93	82	89	82	80	78	82	75	81	77
33	66	56	85	81	75	80	54	87	84	89
34	106	101	103	98	90	95	96	88	92	98
35	53	81	85	74	89	100	66	60	68	98
36	108	86	76	78	86	82	108	117	123	122
37	112	120	127	131	129	131	132	120	131	130
38	92	112	104	120	106	95	108	115	118	111
39	64	63	55	56	42	53	47	46	50	60

	21	22	23	24	25	26	27	28	29	30
40	119	115	121	115	114	123	121	124	118	121
41	31	30	27	38	41	32	36	30	32	29
42	66	61	65	63	58	72	70	67	75	72
43	62	59	45	47	45	52	49	50	52	45
44	72	73	99	97	85	109	89	110	114	116
45	91	88	75	86	76	73	74	82	76	78
46	85	88	79	76	87	97	89	89	82	74
47	37	50	47	47	44	56	51	50	44	47
48	35	32	35	30	31	30	27	27	29	30
49	62	113	110	100	96	74	82	- <i>?</i> 77	84	69
50	91	98	91	87	90	89	75	73	77	74
51	78	96	86	82	85	95	94	75	77	87
52	69	53	43	69	81	73	58	76	74	63
53	45	49	54	43	50	44	45	43	44	50
54	109	118	89	110	98	125	130	118	126	131
55	62	70	72	74	76	77	88	84	80	61
56	41	32	32	29	26	44	24	29	51	44
57	89	102	94	91	95	87	83	97	95	86
58	65	66	63	61	58	64	62	63	57	64
59	104	107	104	83	89	96	101	101	102	91
60	39	25	29	27	28	40	38	34	42	32
61	56	53	52	60	61	68	54	61	52	66
62	76	80	73	76	78	84	70	72	71	68
63	104	101	98	98	114	106	106	114	105	112
64	129	102	117	109	93	93	141	116	127	104
65	100	106	109	95	102	94	94	96	98	91
66	52	61	54	52	48	57	49	54	56	53
67	92	102	101	89	96	98	87	91	87	97
68	33	36	44	34	49	47	56	51	69	51
69	107	95	104	98	106	94	101	109	94	97
70	58	67	73	56	65	61	68	67	66	81
71	45	30	42	47	47	43	49	53	51	45
72	86	76	71	82	81	82	72	91	82	88
73	139	132	132	103	90	95	106	118	98	85
74	56	41	47	38	40	42	44	39	42	49
75	74	73	67	60	63	60	58	62	58	71
76	69	71	78	73	83	75	82	74	70	66
77	82	65	76	71	66	68	62	58	57	58
78	64	65	63	55	63	65	62	72	71	73
79	95	96	88	103	85	88	87	90	89	80
80	71	61	63	62	57	64	62	70	65	70
81	71	65	52	76	68	63	66	61	65	70

	21	22	23	24	25	26	27	28	29	30
82	38	33	35	34	29	33	33	29	36	31
83	126	122	112	125	107	145	148	115	146	136
84	23	14	32	41	25	26	17	20	29	20
85	110	91	101	96	92	94	102	95	100	102
86	85	76	94	100	86	72	97	89	85	89
87	24	28	23	46	51	59	58	26	39	23
88	93	87	87	78	93	103	123	109	86	119
89	98	102	107	96	92	103	97	87	98	102
90	89	96	130	92	116	101	99	98	108	96
91	69	36	44	49	57	38	44	41	54	68
92	20	48	61	56	55	62	52	53	55	67
93	62	67	79	104	94	103	92	94	83	100
94	60	68	75	70	84	76	63	77	69	62
95	118	106	129	126	139	118	122	141	132	137
96	56	64	71	65	71	63	59	63	59	75
97	48	46	29	38	36	52	57	47	50	51
98	56	67	54	73	110	71	78	73	90	102
99	104	103	101	97	93	97	85	89	86	93
100	102	105	120	113	114	110	115	132	133	122
101	116	127	125	130	131	124	133	139	140	140
102	127	132	135	145	153	86	162	168	186	187
103	54	35	89	101	78	95	123	89	43	104
104	47	58	78	59	62	55	62	43	60	54
105	148	142	142	145	149	150	156	154	149	149
106	55	35	43	53	63	38	85	65	122	112
107	140	141	134	160	138	148_	160	156	159	153

ANNEXE III

EXPLORATION FONCTIONNELLE RESPIRATOIRE

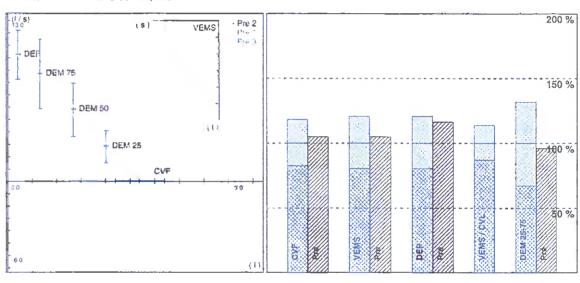
SERVICE TECHNIQUE Dyn'R 73 rue de Louge BP 71 31603 MURET Cedex 05-62-23-19-00

Examen du 26/11/2009

Nom Prénom Médecin traitant Réf. Norme

: N° anonymat : 28 : EasyWare - Import

Normes


: ERS 93 - Zapietal

Sexe Taille Poids

: Masculin : 178 cm : 63 Kg

Né(e) le : 14/11/1989

Age : 20 Ans
Tabagisme : NON-FUMEUR

	Theo.	Pre 2	"oTh.	Pre 1	oln.	Pre 3	³₀Th.	
CVF (1)	5.39	5.51	104	5.56	103	5.44	101	
VEMS (i)	4.58	4.78	104	4.83	105	4 76	104	
VEMS/CVF (%)	84	85	102	86	103	88	105	
DEP (I/s)	10.22	11.76	115	11 58	113	11 07	108	
DEM 75 (1/s)	B.57	9.50	111	9 91	114	10.10	117	
DEM 50 (1/s)	5.78	5.84	103	5 65	101	6.77	117	
DEM 25 (1/s)	2.79	2.35	84	2 75	99	2.57	92	
DEM 25-75 (1/s)	5.29	5.10	96	5 45	103	5 66	107	
ATS - CVF - Ok		PRE *		mil		POST %		ml
CVF		3.0		169		0.0		0
VEMS		0	8		1	0.	0	0

OC Qualite - CVF Pre A

Pimax = 100 cmH2O

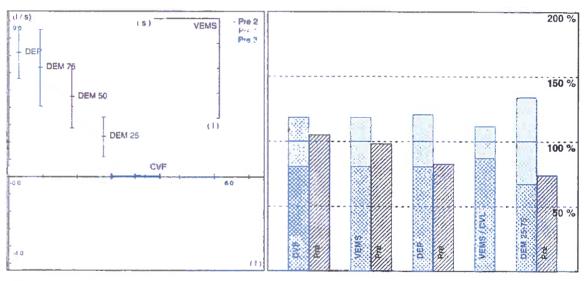
SERVICE TECHNIQUE Dyn'R 73 rue de Louge BP 71 31603 MURET Cedex 05-62-23-19-00

Examen du 03/12/2009

Nom Prénom

: N° anonymat ; 56 : EasyWare - Import

Médecin traitant Réf. Norme


Normes : ERS 93 - Zapletal

ld. Sexe Taille Poids

: Féminin : 161 cm : 54 Kg

: 11/05/1989 Né(e) le

Age : 20 Ans Tabagisme : NON-FUMEUR

	Théo.	Pré 2	%Th.	Pré 1	°•∓h.	Pré 3	°eTh.	
CVF (1)	3.72	3.92	105	3 82	103	3 86	104	
VEMS (1)	3.26	3.18	97	3 16	97	3 07	94	
VEMS / CVF (%)	86	81	95	83	97	80	93	
DEP (I/s)	7.14	5.95	83	8 71	94	5 80	1.0	
DEM 75 (1/s)	5.28	5.39	86	5 57	89	5 50	87	
DEM 50 (1/s)	4.60	3.89	85	3 86	84	3 68	80	
DEM 26 (1/s)	2.30	1.47	64	1.55	67	1 37	59	
DEM 25-75 (176)	4.25	3.16	74	3 24	76	2 92	69	
ATS - CVF - Ok		PRE 1	p .	11	al	POST 5	lia .	ml
CVF		2	5	5	7	0	0	0
VEMS		3	2	10	2	0	0	0

GC Qualite - CVF Pre D

Pimax = 95 cmH2O